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Ul t ra - th in  po ly imide  f i lm as a gas-separat ion layer for  compos i te  
m e m b r a n e s  
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Composite membranes with an ultra-thin polyimide separation layer have been prepared by the deposition 
of dimethylalkylammonium salt of polyamic acid on a poly(phenylene oxide) porous support layer by the 
Langmuir Blodgett technique and subsequent thermal cyclization of the polyimide precursor. In spite of a 
relatively mild thermal treatment, complete cyclization was achieved as observed by Fourier transform 
infra-red spectroscopy. The composite membrane with polyimide ultra-thin separation layer exhibited a 
considerably high permeation rate, maintaining a good selectivity. Copyright © 1996 Elsevier Science Ltd. 
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Introduction 
Aromatic polyimides (API) are frequently used in the 

microelectronics 1-3 and aerospace industries 3 owing to 
their excellent thermal stability, good mechanical prop- 
erties and durability. Recently, they have also attracted 
attention as materials applicable in separation tech- 
niques 4 s. In addition to their use in pervaporation and 
pressure-driven separations s (microfiltration, ultrafil- 
tration and reverse osmosis), polyimides are studied 

4 6 mainly for the separation of gases-  . In spite of the 
high selectivity, their application as homogeneous 
membranes is limited by relatively low perme- 
ability 4-6'9'1°. According to Fick's first law, the gas flux 
is proportional to the reciprocal value of the membrane 
thickness 11. Therefore, ultra-thin films prepared by the 
Langmuir-Blodgett (LB) technique, the thickness of 
which can be adjusted in molecular dimensions by the 
successive deposition of monomolecular layers, represent 
a promising way of increasing the permeation rate. 

Several attempts to use LB films as gas-separation 
layers for composite membranes have been published, 
but a satisfactory permselectivity has rarely been 
achievedl2 16. The reasons for the low permselectivity 
of many studied systems seem to be both the use of low- 
molecular-weight compounds resulting in poor mechan- 
ical properties of the LB films (leading to cracks) and use 
of macroporous support membranes, which are difficult 
to co'*~r by ultra-thin films. This work describes the 
prepa ttion and permeation properties of the composite 
memlc ane containing an LB ultra-thin API separation 
layer z ad a poly(phenylene oxide) (PPO) porous asym- 
metric ~upport membrane with the largest pore diameter 
of 181.,n in its skin 17. Advantages of the application of 
API for the ultra-thin layer consist in their highly 

* T o  w h o m  c o r r e s p o n d e n c e  shou ld  be addres sed  

selective permeability and good mechanical strength. 
Moreover, ultra-thin API films consisting of an eligible 
number of monomolecular layers, each 4--6 A thick, can 
be prepared by the LB technique with a low number of 
defectslS 2~. 

Experimental 
Synthesis of precursors of polyimides. Polyamic acid 

(PAA) was synthesized by reaction of dianhydride of 
3,3~,4,4r-benzophenonetetracarboxylic acid and bis- 
(4-aminophenoxy) ether in N,N-dimethylformamide 
(DMF) 22. Dimethyldodecylammonium salt of PAA 
(PAA-12) and dimethylhexadecylammonium salt of 
PAA (PAA-16) were prepared by neutralization of 
PAA with dimethyldodecylamine and dimethylhexade- 
cycl-amine, respectively is. 

Preparation of ultra-thin polyimide films. Mono- 
molecular films of PAA-12 and PAA-16 were spread 
on water (p = 18 M~cm)  from DMF/hexane solutions. 
LB films consisting of 30 molecular layers of PAA-12 or 
PAA-16 were deposited on the skin of the PPO support 
by horizontal touching of the monomolecular films 
compressed on the air-water interface at 10mNm -1. 

The cyclization reaction described in Scheme 1 was 
carried out by heating the composite membrane under 
0.5mmHg pressure at 80°C for 60min, at 150°C for 
60min, at 165°C for 30rain and at 190°C for 10min, 
successively. 

Spectroscopic characterization. Chemical structure 
of the ultra-thin layers was determined by Fourier 
transform infra-red spectroscopy (FT i.r.) using a Bruker 
IFS 55 spectrometer and a Ge 45 ° reflection element. 

Permeation experiments. The permeation rates of O2, 
N2 and CO2 through composite membranes were 
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Figure 1 Surface pressure-area isotherms of Langmuir films of 
polyamic acid salts on water at ll°C: curve l, PAA-12; curve 2, 
PAA-16 

measured by the differential permeation method using 
apparatus with a thermal conductivity detector, as 
described elsewhere 23. The given permeation rates 
represent average values obtained with two samples. 

Results and discussion 
The PAA-12 and PAA-16 polyimide precursors were 

deposited by the LB technique on PPO asymmetric 
porous membranes. Preparation and characterization 
of the support has been described elsewhere 17. The 
pressure-area (Tr-A) isotherms of the films at 11 °C are 
shown in Figure 1. The slow non-linear increase of the 
surface pressure with decreasing area indicated a 
structural reorganization of the polymer film on water, 
particularly at the beginning of the compression. 
Repeating units "with shorter aliphatic chains occupied 
smaller areas. Limiting molecular areas of 0.86 nm 2 and 
1.13 nm 2 were estimated by extrapolation of the linear 
parts of 7r-A curves for a repeating unit of the 
dimethyldodecylammonium salt and the dimethylhexa- 
decylammonium salt, respectively. 

Temperatures above 300°C were reported as a 
necessary condition for the complete cyclization of 
PAA 24. However, the temperature range applicable to 
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Figure 2 F T  i.r. multiple internal reflection spectra of LB films (20 
layers): (A) PAA-16 on PPO support, ordinate compressed 10 times; 
(B) PAA-16 on PPO support, PPO spectral bands subtracted; (C) 
thermally treated PAA-16 (PI) on PPO support, PPO spectral bands 
subtracted 

the composite membranes was limited by the glass 
transition temperature of the PPO support 25, Tg = 
224°C. FTi.r. was used for the determination of the 
extent of cyclization achieved by thermal treatment. 
Surface-enhanced spectra scanned in a reflection mode 
show spectral bands of the PPO support with only the 
most intense bands of the LB film apparent (Figure 2A). 
Using a digital subtraction procedure the spectrum of 
PPO was eliminated and the spectra of ultra-thin films, 
both before and after the thermal treatment, were 
developed. The spectrum of the PAA-16 precursor in 
Figure 2B shows characteristic bands of amide group at 
1666 and 1546cm -1 and the band of ionized carboxyl 
group at 1606cm -~. After the thermal treatment 
(Figure 2C) all the mentioned bands completely dis- 

1 appeared (the residual absorption at 1670cm corre- 
sponds to the benzophenone carbonyl group previously 
overlapped by the band of the amide group) 26'27. 
Simultaneously, a typical doublet of carbonyl group 
corresponding to imide moiety appeared at 1779 and 
1726cm -~ together with the imide C-N band at 
1370cm 1. The spectral changes correspond to the 
changes found when the precursor was heated in bulk 
at 300°C. The spectra suggest that the PAA salt in the LB 
film was completely cyclized even if the applied 
temperature did not exceed 190°C. 

Permeation properties of the composite membranes 
with the LB ultra-thin separation layers of precursors 
PAA-12 and PAA-16, and polyimides PI-12 and PI-16 
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Table I Permeation rates R through composite membranes with ultra- 
thin separation layer of PAA-12, PAA-16 and polyimide (PI). 
R (xl010mols-~m-_Pa i) for various gases and therefrom 
calculated selectivities, c~ 

Ultra-thin layer R% RN2 Rco ~ CtO~_/N: c~ C%/N2 

PAA-12 5.80 2.54 20.51 2.28 8.08 
PAA-16 27.30 12.70 76.81 2.15 6.04 
P[-12 19.44 8.68 70.13 2.24 8.08 
PI-16 12.52 1.60 41.10 7.71 25.73 
PI" 0.085 0.011 0.277 8.10 26.38 
PDA b 25.00 50.0 - 2.0 

" Ref. 10 
h Ref. 13 

p repa red  f rom PAA-12  and  PAA-16,  respectively,  are 
summar ized  in Table  1. Permea t ion  rates o f  N 2, 02  and 
CO2 th rough  the PPO suppor t  wi thout  an LB film were 
above  the upper  l imit  measurab le  with the appa ra tus  
used. Wi th  the separa t ion  layer,  the pe rmea t ion  
decreased to measurab le  values and  the appa ren t  
selectivity suggested that  pores  in the PPO supppor t  
were efficiently overcoa ted  with LB films. Al l  the 
compos i te  membranes  showed pe rmea t ion  rates that  
were two to three orders  o f  magn i tude  higher  than  those 
o f  homogeneous  f i lmstens  o f  micromet res  thick, o f  o ther  
A P I  9'2~. H o m o g e n e o u s  films, a few micromet res  thick, 
having identical  chemical  s t ructure  to the poly imides  
used in this work  (PI) show pe rmea t ion  rates approx i -  
mate ly  two orders  o f  magn i tude  lower than  those o f  the 
compos i t e  membranes  with PI-12 and PI-16 LB separa-  
t ion layers ~°. The compos i t e  membranes  with PAA-12  
and PAA-16  u l t ra - th in  films showed only a slightly 
higher  ra t io  o f  pe rmea t ion  rates o f  02 over  N 2 than  
compos i t e  membranes  with a po ly(dodecy lac ry lamide)  
( P D A )  separa t ion  layefl  3. The cycl izat ion o f P A A - 1 6  LB 
film decreased the pe rmea t ion  rate  par t i cu la r ly  for 
ni t rogen,  fo rming  a defect-free u l t ra - th in  po ly imide  
separa t ion  layer  with a high selectivity similar  with that  
o f  the thick homogeneous  po ly imide  m e m b r a n e  
(Tab le  1)10. The increase in selectivity o f  the m e m b r a n e  
after  cycl izat ion p r o b a b l y  reflects cons iderab le  differ- 
ences in the chemical  s t ructure  o f  the poly imides  and 
their  long-a lky l -cha in  conta in ing  precursors .  These 
differences in chemical  structure may  be responsible for 
changes o f  many  po lymer  propert ies  affecting the gas 
permeat ion  (charge-transfer  complexes,  hydrogen  bond-  
ing, flexibility, order ing,  free vo lume dis t r ibut ion ,  inter-  

5 11 ~) 31 chain spacing,  etc.) ' ' dur ing  cyclizat ion,  which in 
consequence  can lead to diffusivity selectivity especially 
favour ing  the smallest  molecules.  

As  can be seen f rom Table  1, the cycl izat ion o f  PAA-12  
LB film did not  lead to a selectivity increase. A r o m a t i c  
rings of  po lyamic  acid canno t  lie flat on the water  surface 
if  the long alkyl  chain o f  the amine  is shor ter  than  the 

21 hexadecyl  g roup  . This  effect impai rs  the qual i ty  o f  
an LB film because the result ing folds and o ther  
s t ructura l  inhomogenei t ies  are vulnerable  to the 

32 fo rma t ion  o f  defects (pinholes) ,  especial ly dur ing  
33~ the thermal  cycl izat ion (when a film shrinks ), with a 

negative impac t  on the selectivity. 
It may  be concluded tha t  a compos i t e  m e m b r a n e  with 

a high pe rmea t ion  rate and  good  selectivity for gases can 
be p repared  by coa t ing  a porous  asymmetr ic  thick film o f  
po ly(phenylene  oxide) with the u l t ra- th in  LB poly imide  
separa t ion  layer. 
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